Orchestration of Public Administration Services using the semantic technologies

Marek Skokan, Peter Bednár
Web Services

- remote program procedures
- Service Oriented Architecture
 - decoupling of service requester and service provider ("weak" binding)
 - dynamic search and invocation of services
- Web services technologies
 - WSDL – describes structure of messages and technical access to the service (i.e. port, protocol, etc.)
 - SOAP – XML protocol for data exchange over the network
 - UDDI – registry for web services
Semantic Web Services

• Limitations of current technologies – data is described on the “syntactical” level only => limited discovery, composition, execution

• Semantic web services => add semantic annotations to support
 – discovery – find service capable to solve given problem
 – composition – create composite service to solve more complex problems
 – execution – monitoring, compensation, auditing
 – mediation – solve various heterogeneity problems
Orchestration and Choreography

- important for automatic execution and composition
- both describe behavior of web services from two different perspectives
- **Choreography** – how the requester can communicate with one service to achieve given goal (interaction *requester* ↔ *service*)
- **Orchestration** – how the composite service is using other services to achieve more complex goal (interaction *composite service* ↔ *services*)
Access e-Gov context

- FP6 EU project
- Integrate existing “traditional” and electronic services government services
- Create complex hybrid scenario for the specific life event to guide citizen/company to achieve particular goal
- Semantic annotations – Web Service Modeling Ontology
WSMO model for orchestration and choreography

- based on Abstract State Machines
- state is represented as the ontology
- transitions
 - if some condition then change state (i.e. add/remove some instance or change value of some instance’s attributes)
- too “abstract” for Access e-Gov
 - difficult to navigate citizens
 - non-intuitive modeling
 - not finished yet, unspecified dataflow
Access e-Gov process model

• workflow based
• consists of: activity nodes, control links and dataflow links
• activity nodes
 – communication nodes – Send, Receive
 – AchieveGoal and InvokeService
 – control node – Decision, Fork and Join
• control links
 – specify execution order – various workflow patterns – branching, cycles, parallel execution
Access e-Gov process model

• **dataflow links**
 – copy and additionally transform value from source node to target node
 – source logical expression => target logical expression
 – mediation on the data level and on the process level – i.e. it is possible to express mediation between parent process (orchestration model) and children processes (choreography models)
Modeling of traditional services

• **customizations**
 – questions used to identify specific citizen case and customize process model
 – questionnaires modeled as concepts, answers as instances, *Receive* nodes (optionally conditioned)

• list of **pre-conditions**
 – required artifacts (i.e. documents, application forms, payments, etc.)
 – *Receive* nodes (when user can provide artifact directly), *AchieveGoal* (when service is needed)

• list of **post-conditions**
 – provided artifacts
Conclusions

• workflow based process model for orchestration and choreography in hybrid scenarios
• allows coordination of all actors – i.e. traditional services, electronic services and human actors (i.e. citizens)
• compatible with existing modeling notations – UML, BPMN
• dataflow model which allows data mediation and process mediation