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Abstract. The area of evolutionary computation faces nowadays notable increase of 

both, research interest and application requirements. Genetic Algorithms are among 

the most popular evolutionary techniques and they are applied to a variety of real 

world problems. In all application domains, excellent performance expressed by the 

means of fast convergence times and precise results are desired. In this paper, we 

investigate hybrid selection and adaptive genetic operators, a modification to GA 

aiming to reach better performance and investigate the effect of these improvements 

on benchmarking problems. 

1 Introduction 

Genetic Algorithms are formed by wide family of methods adopting the paradigms of 

evolutionary algorithms and emulated genetic evolution in particular. They usually feature 

modifications (from minor up to major) that customize the algorithm to particular problem 

domain. The parameter setup of genetic algorithm is crucial for good performance in 

given application area and the best performing settings vary among the problem domains. 

However, several methods aiming to improve the performance of genetic algorithms in 

general were introduced. We present in this paper hybrid selection schema and genetic 

operators with adaptable probabilities of application as a contribution to the class of 

methods improving performance of genetic algorithms. Additionally, we provide initial 

benchmarking of these methods. 
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2 Evolutionary Algorithms 

Evolutionary Algorithms (EA) are family of stochastic search and optimization methods 

based on mimicking successful strategies observed in nature [3, 5]. The idea behind EA is 

emulation of Darwinian evolution utilizing Mendelian inheritance concepts for the use in 

computer science. Together with Fuzzy Theory, Neural Computation, Fractals and Swarm 

Intelligence, EA are among fundamental ingredients of state-of-the-art Soft Computing 

methods [7]. 

EAs operate over a population (pool) of artificial individuals (items, chromosomes) 

encoding possible solutions. Encoded individuals are evaluated using objective function 

which assigns a fitness value to each individual. Fitness value represents the quality 

(ranking) of each individual as solution of given problem. Competing individuals 

intensively search the solution space of given problem in more directions simultaneously 

towards optimal solution [5]. 

The EA process starts with an initial population of individuals that might be generated 

randomly or seeded by an operator with potentially good solutions. The search phase of 

EA is iterative and consists of application of genetic operators (selection, crossover, 

mutation) on current population with the aim to form new population (new generation) 

that will be in following iteration treated as current. Iterative evolution of better solutions 

ends after satisfying specified termination criteria, i.e. finding optimal solution or 

processing specified number of generations. 

EAs are successful general adaptable concept with good results in many application 

areas. The family of evolutionary algorithms consists of Genetic Algorithms (GA), 

Evolutionary strategies (ES) and Evolutionary programming (EP). Among the most 

important high-level variants of Genetic Algorithms, Genetic programming (GP) by J. 

Koza attracts attention. GP is used for executing artificial evolution over hierarchical 

rather than linear chromosomes and therefore is usable to evolve computer programs or 

other hierarchically structured entities such as search queries. Genetic operators are 

applied on nodes of tree chromosomes encoding hierarchical individuals. GP has a good 

ability to produce symbolic output in response to symbolic input [3]. 

2.1 Genetic Operators 

Genetic operators are used for implementation of artificial evolution. Operators, applied 

during the iterative artificial evolution are [6]: 

 Selection operator: to select chromosomes from population. Through this operator, 

selection pressure is applied on the population. 
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 Crossover (recombination) operator: for varying chromosomes from one population to 

the next by exchanging one or more of their subparts. Mimics sexual reproduction of 

haploid organisms. 

 Mutation operator: performs random perturbation in chromosome structure; used for 

changing chromosomes randomly and introducing new genetic material into the 

evolving population. 

In various EA methods are particular genetic operators used in different manner [6]. 

Evolutionary programming [5, 1] operates over strings of real numbers and uses only 

mutation operator, while evolutionary strategies [5, 1] evolve individuals composed of 

real-numbers string and a group of objective variables used for tuning the mutation 

operator. Genetic algorithms use recombination operator as most important element of 

artificial evolution. 

2.2 Genetic Algorithms 

Genetic Algorithms, introduced by Holland in 60s and extended by Goldberg at the end of 

80s, were defined when exploring the possibilities of computer emulated evolution [6]. 

Now, they are widely applied, rapidly growing and highly successful EA variant. 

In contrast to ES and EP, genetic algorithms were originally designed as a general 

model of adaptive processes. Similarly to ES and EP, they have found most of its 

applications in the domain of optimization. Basic workflow of Holland’s originally 

proposed generational GA is as follows: 

 
1. Encode initial population of possible solutions and evaluate chromosomes (assign 

fitness value) 
2. Create new population (evolutionary search for better solutions): 

a. Select suitable chromosomes for reproduction (parents) 
b. Apply crossover operator on parents with respect to crossover probability 

to produce new chromosomes (offspring) 
c. Apply mutation operator on offspring chromosomes with respect to 

mutation probability. Add newly constituted chromosomes to new 
population 

d. Until the size of new population is smaller than size of current population 
go back to a. 

e. Replace current population by new population  
3. Evaluate current population; assign fitness values to chromosomes  
4. Check termination criteria; if not satisfied go back to 2. 

 

There are several high-level modifications of genetic algorithms. Among the most 

important are: generational GA, where the replacement of chromosomes in population 

between two generations is driven according to a generation gap parameter. If the 

generation gap value is 1, whole parent population is replaced by newly created offspring 
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chromosomes [6]. This approach corresponds to Holland’s original proposal of GA. In 

contrast, steady state GA has never replaced whole population when migrating from one 

generation to another. Only few weakest individuals are replaced by fittest offspring 

chromosomes. This is more exact emulation of long time living species evolution, where 

parents and children compete in one population. Therefore, more promising individuals 

can be intensively investigated at the time of their creation. There is no proof whether first 

of these two approaches is fundamentally better than latter; both are used according to 

application demands [6]. 

2.3 Optimization of genetic parameters 

Termination criteria, probability of crossover, probability of mutation, size of population, 

maximum number of processed generations and migration strategy are among the most 

important parameters of each GA implementation. Moreover, the particular operator 

implementation affects the efficiency of the algorithm fundamentally. All the mentioned 

parameters must be tuned to fit the particular problem and its domain in order to provide 

best performance. The tailoring of proper genetic parameters is non-trivial task and 

employs sophisticated techniques. The methods can be divided on domain knowledge 

based approaches, exploiting certain property of problem domain to choose proper genetic 

parameters and soft approaches seeing the genetic parameter optimization task as general 

optimization problem. Among others soft approaches, genetic algorithms itself were used 

for optimization of GA parameters introducing meta-optimization to GA parameters 

harmonization studies. In this paper, we investigate two GA improvement techniques 

aiming to offer performance gain when exploiting GA as soft optimization method. The 

methods are introduced and their performance results evaluated using selection of GA 

benchmarking problems. 

3 Hybrid selection 

GA selection schemes are crucial for the successful run of the optimization algorithm. The 

selection operator implementation introduces selection pressure to the population when 

selecting chromosomes for mating to form new offspring and therefore contribute on the 

new population. Natural requirements on selection operator are quick convergence to 

global optima while avoiding local optima. The scenario when algorithm jams in local 

optima is known as premature convergence. Also, the diversity (variety of different 

chromosomes) in population is desired to stay high in order to avoid local optima.  

Genetic Algorithm using some sort of common selection operator preferring blindly 

higher fitness chromosomes such as proportionate selection, truncation selection, 
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tournament selection and so on usually offer good diversity in population leading to 

globally optimal solutions for the price of notably longer convergence time.  

GA exploiting elitary selection means chose parents among the best ranked individuals 

in population only. This supports quick convergence under the threat of premature 

convergence. In this paper, we combine common selection with elitary selection in order 

to obtain quick and robust genetic algorithm providing both, improved convergence time 

and local optima awareness. 

The hybrid selection scenario is defined as follows: first parent is selected by elitary 

means and the second by common means. It means that the selection method always picks 

one member of the class of bets ranked chromosomes from the population, being the best 

solutions found so far, and second parent is chosen from whole population (possibly but 

not necessarily also belonging to the class of  best ranked individuals).  

4 Adaptive genetic operator probability 

The disadvantage of GA as soft universal optimization method is the need to choose right 

parameters for the genetic algorithm in order to obtain good performance in every 

particular application area. There is no common general parameter-less GA (although 

several investigations are in progress) or common general GA parameter setup (although 

some GA parameter values are being suggested or widely used in particular application 

areas). Moreover, the static assignment of GA operator probability does not reflect the 

changing state of the genetic algorithm and its population during the search. The maturity 

of whole population at certain generation (at certain optimization step) can be described 

by the means of fitness landscape. The fitness landscape (FL), inspired similarly as 

genetic algorithms in biological science, is used to describe the dynamics of artificial 

evolution [2]. FL is a N+1 dimensional hyper-surface for which the N corresponds with 

number of genes in chromosome and the final dimension is fitness value for the 

chromosome. According to the fitness value, FL can be divided into regions of several 

kinds: 

 
1. Flat or neutral, where the offspring population have no or insufficient 

improvement over parent populations 
2. Multimodal, where the convergence varies rapidly 
3. Unimodal, which is the state in which the population approaches optimum state 

 

Intuitively, GA is desired to leave the flat and multimodal areas and FL aware probability 

of application of GA parameters can contribute to this. It has been shown, that properly 

defined dynamically changing fitness sensitive probability of mutation and crossover can 

improve the performance of GA over static parameter setup. 
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Our genetic algorithm uses the functions PM : [0,1] → R and Pc : [0,1] → R defined as 

follows: 
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Asymmetric reverse sigmoid (2) is for our purposes defined with following parameters: b 

denoting centre of the transition is equal to 0.75, c and d used for enumeration of 

transition width is equal to -0.05 and 0.3 respectively. It assigns high mutation rate to low 

valued individuals and low mutation rate to high fitness chromosomes (see figure 2). The 

fitness values are expected to be normalized to the interval [0, 1] and the algorithm is 

supposed to perform maximization of fitness value.  

 
Adaptive genetic operators defined as above prioritize for lower fitness chromosomes 

mutation and for higher fitness chromosomes crossover. It means that for low fitness areas 

the algorithm performs rather random search jumps over large distances in FL in order to 

change the bad genome and for high fitness chromosomes is performed careful search 

exploiting good genome of high ranked chromosomes. 

 

 
 

Fig. 1. Adaptive probability of crossover PC and adaptive probability of mutation PM 
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5 Experiments and results 

We have tested proposed improvements with several GA benchmarking functions in R
2
 

selected mainly from [4]. The performance of improved GA was compared to 

performance of classical GA. 
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Fig. 3. Easom function f3 and Rastrigin function f4 

       
 

Fig. 2. Function  f1  and Rosenbrock valley function f2  
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Let us briefly mention the properties of benchmarking functions [4]. Function f1 has 

global optimum at [0, 0] and features lots of global minima and maxima in circles around 

[0, 0]. Rosenbrock valley function f2 defined in (4) features parabola shaped narrow ridge 

with global minima 0 at [1, 1]. Both functions are shown in Figure 2. Easom function f3 

defined in (5) is difficult due to the steep and relatively small filler area with global 

minima 0 at [ , ] while the majority of its surface is flat. Ratsrigin function f4 of (6) 

contains dozens of local optima and one global minimum 0 at [0, 0]. These functions are 

illustrated in Figure 3.  

 
The experimental results expressed by the means of number of generations processed and 

fitness at final generation are shown in Tables 1 and 2 respectively. The experiments were 

performed multiple times and presented results are average values of the experimental 

runs. Genetic algorithm was terminated when the global optimum was reached or 25000 

generations passed. Genetic operators were 1-point crossover and bit mutation. The 

chromosome was implemented as a pair of two coordinates with at most two decimals (so 

for instance the best approximation of  was 3.14).  The classic implementation of GA is 

in the tables referred as plain and adjusted denotes the experiments with adaptive genetic 

operators. 

 

Table 1. Average number of generations (out of 25000) 
 

            Function 
 

 Algorithm 
f1 f2 f3 f4 

plain (tuned 
parameters) 

15592 25000 25000 5690,1 

plain (wrong 

parameters) 
25000 25000 25000 25000 

Elitism 13899 25000 25000 6471,6 

Hybrid 10696 25000 25000 2414,8 

Adjusted 25000 25000 25000 7864,9 

hybrid and 
adjusted 

19658 22823 25000 5326,7 

hybrid and 

elitary 
25000 25000 25000 5706,4 
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The results indicate the following: it has been confirmed, that the right parameter setup 

affects GA performance rapidly. The wrong parameters avoided GA to reach optimal 

solution in less than 25000 generations while it has been achieved when using tuned 

parameters (row 1). Surprisingly, the parameter setup we expected as wrong caused 

increase in final fitness for f2 and f3. Elitism decreased the number of generations needed 

for finding optima for functions f1 and f4 while not affecting eminently results for f2 and f3. 

Hybrid selection increased the convergence speed at most while producing only slightly 

lower average fitness. It means that the algorithm with hybrid selection converged to 

global optimum quickly several times but also sometimes missed the optimum 

significantly. Adjusted operator probability did not speeded up the convergence over 

wrong parameterized GA but caused better average final fitness. The combination of 

hybrid selection and adaptive genetic operators increased the convergence speed over the 

level of GA with adaptive operators only and over-performs clearly wrong parameter GA 

and also the combination of elitism with adaptable operators. Also, the variant with 

adaptable operators and hybrid selection as the only found the global optima of 

Rosenbrocks function f2.  

6 Conclusion 

This paper summarizes hybrid selection and genetic operators with adaptable probabilities 

and provides benchmark of those methods. We show that hybrid selection and adjustable 

operators can contribute to both, convergence speed and result precision, especially 

comparing to classic GA with wrong parameter setup. Good results obtained for 

Rosenbrock valley function suggest that the modified algorithm is good at finding the 

right direction in the problem space. 

Table 2. Average number of generations (out of 25000) 

 

            Function 
 

 Algorithm 
f1 f2 f3 f4 

plain (tuned 

parameters) 
1 0,8131 0,8661 1 

plain (wrong 

parameters) 
0,9936 0,8992 0,9843 0,503 

elitism 1 0,8126 0,8602 1 

hybrid 0,999 0,7595 0,8311 1 

adjusted 0,9938 0,8609 0,6997 0,9112 

hybrid and 
adjusted 

0,997 0,976 0,7526 0,9201 

hybrid and 

elitary 
0,9942 0,7553 0,6662 0,9201 
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Clearly, the results obtained for adaptable genetic operator probabilities applied without 

the support of hybrid selection are rather unsatisfactory and the adaptable operators are 

still under investigation, focusing on the function PC(f), since there is not as firm 

underlying semantics as for PM(f). Moreover, PM(f) as defined in (2) features number of 

parameters that deserve further investigation. 
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