
Benchmarking Hybrid Selection and Adaptive
Genetic Operators

Václav Snášel, Pavel Krömer and Jan Platoš

Department of Computer Science,
Faculty of Electrical Engineering and Computer Science,

VŠB - Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava - Poruba, Czech Republic

{vaclav.snasel, pavel.kromer.fei, jan.platos.fei}@vsb.cz

Benchmarking Hybrid Selection and Adaptive Genetic

Operators

Václav Snášel1, Pavel Krömer1 and Jan Platoš1

1Department of Computer Science, Faculty of Electrical Engineering and Computer Science

VŠB – Technical University of Ostrava,

17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic

{vaclav.snasel, pavel.kromer.fei, jan.platos.fei}@vsb.cz

Abstract. The area of evolutionary computation faces nowadays notable increase of

both, research interest and application requirements. Genetic Algorithms are among

the most popular evolutionary techniques and they are applied to a variety of real

world problems. In all application domains, excellent performance expressed by the

means of fast convergence times and precise results are desired. In this paper, we

investigate hybrid selection and adaptive genetic operators, a modification to GA

aiming to reach better performance and investigate the effect of these improvements

on benchmarking problems.

1 Introduction

Genetic Algorithms are formed by wide family of methods adopting the paradigms of

evolutionary algorithms and emulated genetic evolution in particular. They usually feature

modifications (from minor up to major) that customize the algorithm to particular problem

domain. The parameter setup of genetic algorithm is crucial for good performance in

given application area and the best performing settings vary among the problem domains.

However, several methods aiming to improve the performance of genetic algorithms in

general were introduced. We present in this paper hybrid selection schema and genetic

operators with adaptable probabilities of application as a contribution to the class of

methods improving performance of genetic algorithms. Additionally, we provide initial

benchmarking of these methods.

c© Václav Snášel (Ed.): Znalosti 2008, pp. 224–233, ISBN 978-80-227-2827-0.
FIIT STU Bratislava, Ústav informatiky a softvérového inžinierstva, 2008.

Benchmarking Hybrid Selection and Adaptive Genetic Operators 225

2 Evolutionary Algorithms

Evolutionary Algorithms (EA) are family of stochastic search and optimization methods

based on mimicking successful strategies observed in nature [3, 5]. The idea behind EA is

emulation of Darwinian evolution utilizing Mendelian inheritance concepts for the use in

computer science. Together with Fuzzy Theory, Neural Computation, Fractals and Swarm

Intelligence, EA are among fundamental ingredients of state-of-the-art Soft Computing

methods [7].

EAs operate over a population (pool) of artificial individuals (items, chromosomes)

encoding possible solutions. Encoded individuals are evaluated using objective function

which assigns a fitness value to each individual. Fitness value represents the quality

(ranking) of each individual as solution of given problem. Competing individuals

intensively search the solution space of given problem in more directions simultaneously

towards optimal solution [5].

The EA process starts with an initial population of individuals that might be generated

randomly or seeded by an operator with potentially good solutions. The search phase of

EA is iterative and consists of application of genetic operators (selection, crossover,

mutation) on current population with the aim to form new population (new generation)

that will be in following iteration treated as current. Iterative evolution of better solutions

ends after satisfying specified termination criteria, i.e. finding optimal solution or

processing specified number of generations.

EAs are successful general adaptable concept with good results in many application

areas. The family of evolutionary algorithms consists of Genetic Algorithms (GA),

Evolutionary strategies (ES) and Evolutionary programming (EP). Among the most

important high-level variants of Genetic Algorithms, Genetic programming (GP) by J.

Koza attracts attention. GP is used for executing artificial evolution over hierarchical

rather than linear chromosomes and therefore is usable to evolve computer programs or

other hierarchically structured entities such as search queries. Genetic operators are

applied on nodes of tree chromosomes encoding hierarchical individuals. GP has a good

ability to produce symbolic output in response to symbolic input [3].

2.1 Genetic Operators

Genetic operators are used for implementation of artificial evolution. Operators, applied

during the iterative artificial evolution are [6]:

 Selection operator: to select chromosomes from population. Through this operator,

selection pressure is applied on the population.

226 Václav Snášel, Pavel Krömer and Jan Platoš

 Crossover (recombination) operator: for varying chromosomes from one population to

the next by exchanging one or more of their subparts. Mimics sexual reproduction of

haploid organisms.

 Mutation operator: performs random perturbation in chromosome structure; used for

changing chromosomes randomly and introducing new genetic material into the

evolving population.

In various EA methods are particular genetic operators used in different manner [6].

Evolutionary programming [5, 1] operates over strings of real numbers and uses only

mutation operator, while evolutionary strategies [5, 1] evolve individuals composed of

real-numbers string and a group of objective variables used for tuning the mutation

operator. Genetic algorithms use recombination operator as most important element of

artificial evolution.

2.2 Genetic Algorithms

Genetic Algorithms, introduced by Holland in 60s and extended by Goldberg at the end of

80s, were defined when exploring the possibilities of computer emulated evolution [6].

Now, they are widely applied, rapidly growing and highly successful EA variant.

In contrast to ES and EP, genetic algorithms were originally designed as a general

model of adaptive processes. Similarly to ES and EP, they have found most of its

applications in the domain of optimization. Basic workflow of Holland’s originally

proposed generational GA is as follows:

1. Encode initial population of possible solutions and evaluate chromosomes (assign

fitness value)
2. Create new population (evolutionary search for better solutions):

a. Select suitable chromosomes for reproduction (parents)
b. Apply crossover operator on parents with respect to crossover probability

to produce new chromosomes (offspring)
c. Apply mutation operator on offspring chromosomes with respect to

mutation probability. Add newly constituted chromosomes to new
population

d. Until the size of new population is smaller than size of current population
go back to a.

e. Replace current population by new population
3. Evaluate current population; assign fitness values to chromosomes
4. Check termination criteria; if not satisfied go back to 2.

There are several high-level modifications of genetic algorithms. Among the most

important are: generational GA, where the replacement of chromosomes in population

between two generations is driven according to a generation gap parameter. If the

generation gap value is 1, whole parent population is replaced by newly created offspring

Benchmarking Hybrid Selection and Adaptive Genetic Operators 227

chromosomes [6]. This approach corresponds to Holland’s original proposal of GA. In

contrast, steady state GA has never replaced whole population when migrating from one

generation to another. Only few weakest individuals are replaced by fittest offspring

chromosomes. This is more exact emulation of long time living species evolution, where

parents and children compete in one population. Therefore, more promising individuals

can be intensively investigated at the time of their creation. There is no proof whether first

of these two approaches is fundamentally better than latter; both are used according to

application demands [6].

2.3 Optimization of genetic parameters

Termination criteria, probability of crossover, probability of mutation, size of population,

maximum number of processed generations and migration strategy are among the most

important parameters of each GA implementation. Moreover, the particular operator

implementation affects the efficiency of the algorithm fundamentally. All the mentioned

parameters must be tuned to fit the particular problem and its domain in order to provide

best performance. The tailoring of proper genetic parameters is non-trivial task and

employs sophisticated techniques. The methods can be divided on domain knowledge

based approaches, exploiting certain property of problem domain to choose proper genetic

parameters and soft approaches seeing the genetic parameter optimization task as general

optimization problem. Among others soft approaches, genetic algorithms itself were used

for optimization of GA parameters introducing meta-optimization to GA parameters

harmonization studies. In this paper, we investigate two GA improvement techniques

aiming to offer performance gain when exploiting GA as soft optimization method. The

methods are introduced and their performance results evaluated using selection of GA

benchmarking problems.

3 Hybrid selection

GA selection schemes are crucial for the successful run of the optimization algorithm. The

selection operator implementation introduces selection pressure to the population when

selecting chromosomes for mating to form new offspring and therefore contribute on the

new population. Natural requirements on selection operator are quick convergence to

global optima while avoiding local optima. The scenario when algorithm jams in local

optima is known as premature convergence. Also, the diversity (variety of different

chromosomes) in population is desired to stay high in order to avoid local optima.

Genetic Algorithm using some sort of common selection operator preferring blindly

higher fitness chromosomes such as proportionate selection, truncation selection,

228 Václav Snášel, Pavel Krömer and Jan Platoš

tournament selection and so on usually offer good diversity in population leading to

globally optimal solutions for the price of notably longer convergence time.

GA exploiting elitary selection means chose parents among the best ranked individuals

in population only. This supports quick convergence under the threat of premature

convergence. In this paper, we combine common selection with elitary selection in order

to obtain quick and robust genetic algorithm providing both, improved convergence time

and local optima awareness.

The hybrid selection scenario is defined as follows: first parent is selected by elitary

means and the second by common means. It means that the selection method always picks

one member of the class of bets ranked chromosomes from the population, being the best

solutions found so far, and second parent is chosen from whole population (possibly but

not necessarily also belonging to the class of best ranked individuals).

4 Adaptive genetic operator probability

The disadvantage of GA as soft universal optimization method is the need to choose right

parameters for the genetic algorithm in order to obtain good performance in every

particular application area. There is no common general parameter-less GA (although

several investigations are in progress) or common general GA parameter setup (although

some GA parameter values are being suggested or widely used in particular application

areas). Moreover, the static assignment of GA operator probability does not reflect the

changing state of the genetic algorithm and its population during the search. The maturity

of whole population at certain generation (at certain optimization step) can be described

by the means of fitness landscape. The fitness landscape (FL), inspired similarly as

genetic algorithms in biological science, is used to describe the dynamics of artificial

evolution [2]. FL is a N+1 dimensional hyper-surface for which the N corresponds with

number of genes in chromosome and the final dimension is fitness value for the

chromosome. According to the fitness value, FL can be divided into regions of several

kinds:

1. Flat or neutral, where the offspring population have no or insufficient

improvement over parent populations
2. Multimodal, where the convergence varies rapidly
3. Unimodal, which is the state in which the population approaches optimum state

Intuitively, GA is desired to leave the flat and multimodal areas and FL aware probability

of application of GA parameters can contribute to this. It has been shown, that properly

defined dynamically changing fitness sensitive probability of mutation and crossover can

improve the performance of GA over static parameter setup.

Benchmarking Hybrid Selection and Adaptive Genetic Operators 229

Our genetic algorithm uses the functions PM : [0,1] → R and Pc : [0,1] → R defined as

follows:

2)(ffPC (1)

dc

bcf

M
d

e

fP

)1(

1
1)(

)
)12ln(

(

1

(2)

Asymmetric reverse sigmoid (2) is for our purposes defined with following parameters: b

denoting centre of the transition is equal to 0.75, c and d used for enumeration of

transition width is equal to -0.05 and 0.3 respectively. It assigns high mutation rate to low

valued individuals and low mutation rate to high fitness chromosomes (see figure 2). The

fitness values are expected to be normalized to the interval [0, 1] and the algorithm is

supposed to perform maximization of fitness value.

Adaptive genetic operators defined as above prioritize for lower fitness chromosomes

mutation and for higher fitness chromosomes crossover. It means that for low fitness areas

the algorithm performs rather random search jumps over large distances in FL in order to

change the bad genome and for high fitness chromosomes is performed careful search

exploiting good genome of high ranked chromosomes.

Fig. 1. Adaptive probability of crossover PC and adaptive probability of mutation PM

230 Václav Snášel, Pavel Krömer and Jan Platoš

5 Experiments and results

We have tested proposed improvements with several GA benchmarking functions in R
2

selected mainly from [4]. The performance of improved GA was compared to

performance of classical GA.

1000
1

))(sin(1
),(

22

222

1
yx

yx
yxf

(3)

Fig. 3. Easom function f3 and Rastrigin function f4

Fig. 2. Function f1 and Rosenbrock valley function f2

Benchmarking Hybrid Selection and Adaptive Genetic Operators 231

222

2)(1001),(xyxyxf (4)

22)()(

3)cos()cos(1),(yxeyxyxf
(5)

)2cos()2cos(1020),(22

4 yxyxyxf (6)

Let us briefly mention the properties of benchmarking functions [4]. Function f1 has

global optimum at [0, 0] and features lots of global minima and maxima in circles around

[0, 0]. Rosenbrock valley function f2 defined in (4) features parabola shaped narrow ridge

with global minima 0 at [1, 1]. Both functions are shown in Figure 2. Easom function f3

defined in (5) is difficult due to the steep and relatively small filler area with global

minima 0 at [,] while the majority of its surface is flat. Ratsrigin function f4 of (6)

contains dozens of local optima and one global minimum 0 at [0, 0]. These functions are

illustrated in Figure 3.

The experimental results expressed by the means of number of generations processed and

fitness at final generation are shown in Tables 1 and 2 respectively. The experiments were

performed multiple times and presented results are average values of the experimental

runs. Genetic algorithm was terminated when the global optimum was reached or 25000

generations passed. Genetic operators were 1-point crossover and bit mutation. The

chromosome was implemented as a pair of two coordinates with at most two decimals (so

for instance the best approximation of was 3.14). The classic implementation of GA is

in the tables referred as plain and adjusted denotes the experiments with adaptive genetic

operators.

Table 1. Average number of generations (out of 25000)

 Function

 Algorithm
f1 f2 f3 f4

plain (tuned
parameters)

15592 25000 25000 5690,1

plain (wrong

parameters)
25000 25000 25000 25000

Elitism 13899 25000 25000 6471,6

Hybrid 10696 25000 25000 2414,8

Adjusted 25000 25000 25000 7864,9

hybrid and
adjusted

19658 22823 25000 5326,7

hybrid and

elitary
25000 25000 25000 5706,4

232 Václav Snášel, Pavel Krömer and Jan Platoš

The results indicate the following: it has been confirmed, that the right parameter setup

affects GA performance rapidly. The wrong parameters avoided GA to reach optimal

solution in less than 25000 generations while it has been achieved when using tuned

parameters (row 1). Surprisingly, the parameter setup we expected as wrong caused

increase in final fitness for f2 and f3. Elitism decreased the number of generations needed

for finding optima for functions f1 and f4 while not affecting eminently results for f2 and f3.

Hybrid selection increased the convergence speed at most while producing only slightly

lower average fitness. It means that the algorithm with hybrid selection converged to

global optimum quickly several times but also sometimes missed the optimum

significantly. Adjusted operator probability did not speeded up the convergence over

wrong parameterized GA but caused better average final fitness. The combination of

hybrid selection and adaptive genetic operators increased the convergence speed over the

level of GA with adaptive operators only and over-performs clearly wrong parameter GA

and also the combination of elitism with adaptable operators. Also, the variant with

adaptable operators and hybrid selection as the only found the global optima of

Rosenbrocks function f2.

6 Conclusion

This paper summarizes hybrid selection and genetic operators with adaptable probabilities

and provides benchmark of those methods. We show that hybrid selection and adjustable

operators can contribute to both, convergence speed and result precision, especially

comparing to classic GA with wrong parameter setup. Good results obtained for

Rosenbrock valley function suggest that the modified algorithm is good at finding the

right direction in the problem space.

Table 2. Average number of generations (out of 25000)

 Function

 Algorithm
f1 f2 f3 f4

plain (tuned

parameters)
1 0,8131 0,8661 1

plain (wrong

parameters)
0,9936 0,8992 0,9843 0,503

elitism 1 0,8126 0,8602 1

hybrid 0,999 0,7595 0,8311 1

adjusted 0,9938 0,8609 0,6997 0,9112

hybrid and
adjusted

0,997 0,976 0,7526 0,9201

hybrid and

elitary
0,9942 0,7553 0,6662 0,9201

Benchmarking Hybrid Selection and Adaptive Genetic Operators 233

Clearly, the results obtained for adaptable genetic operator probabilities applied without

the support of hybrid selection are rather unsatisfactory and the adaptable operators are

still under investigation, focusing on the function PC(f), since there is not as firm

underlying semantics as for PM(f). Moreover, PM(f) as defined in (2) features number of

parameters that deserve further investigation.

References

1 Thomas Bäck, U. Hammel, and H.-P. Schwefel. Evolutionary computation: comments

on the history and current state. IEEE Transactions on Evolutionary Computation,

1(1):pp. 3–17, April 1997.

2 S. Blum, R. Puisa, J. Riedel, and M. Wintermantel. Adaptive mutation strategies for

evolutionary algorithms. In The annual conference: EVEN at Weimarer Optimierungs-

und Stochastiktage 2.0, 2001.

3 Mehrdad Dianati, Insop Song, and Mark Treiber. An introduction to genetic

algorithms and evolution strategies. Technical report, University of Waterloo, Ontario,

N2L 3G1, Canada, July 2002.

4 Jason Digalakis and Konstantinos Margaritis. An experimental study of benchmarking

functions for evolutionary algorithms. International Journal of Computer

Mathemathics, 79(4):403–416, April 2002.

5 Gareth Jones. Genetic and evolutionary algorithms. In Paul von Rague, editor,

Encyclopedia of Computational Chemistry. John Wiley and Sons, 1998.

6 Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,

MA, 1996.

7 Vitorino Ramos and Ajith Abraham. Evolving a stigmergic self-organized data-

mining. CoRR, cs.AI/0403001, 2004.

